Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12282, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507444

RESUMO

Abortifacient pathogens induce substantial economic losses in the livestock industry worldwide, and many of these pathogens are zoonotic, impacting human health. As Brucella spp., Coxiella burnetii, Leptospira spp., and Listeria monocytogenes cause abortion, rapid differential molecular diagnostic tests are needed to facilitate early and accurate detection of abortion to establish effective control measures. However, the available molecular methods are laborious, time-consuming, or costly. Therefore, we developed and validated a novel multiplex real-time polymerase chain reaction (qPCR) method based on high-resolution melting (HRM) curve analysis to simultaneously detect and differentiate four zoonotic abortifacient agents in cattle, goats, and sheep. Our HRM assay generated four well-separated melting peaks allowing the differentiation between the four zoonotic abortifacients. Out of 216 DNA samples tested, Brucella spp. was detected in 45 samples, Coxiella burnetii in 57 samples, Leptospira spp. in 12 samples, and Listeria monocytogenes in 19 samples, co-infection with Brucella spp. and Coxiella burnetii in 41 samples, and 42 samples were negative. This assay demonstrated good analytical sensitivity, specificity, and reproducibility. This is a valuable rapid, cost-saving, and reliable diagnostic tool for detecting individual and co-infections for zoonotic abortifacient agents in ruminants.


Assuntos
Abortivos , Brucella , Doenças dos Bovinos , Coxiella burnetii , Doenças das Cabras , Leptospira , Doenças dos Ovinos , Gravidez , Feminino , Animais , Bovinos , Ovinos/genética , Humanos , Cabras/genética , Reprodutibilidade dos Testes , Ruminantes/genética , Coxiella burnetii/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Leptospira/genética , Brucella/genética , Doenças dos Ovinos/diagnóstico , Doenças dos Bovinos/diagnóstico
2.
Vet Med Sci ; 9(4): 1465-1472, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119524

RESUMO

We sought to investigate whether SARS-CoV-2 was present, and to perform full-length genomic sequencing, in a 5-year-old male crossbreed dog from Gaborone, Botswana that presented overt clinical signs (flu-like symptoms, dry hacking cough and mild dyspnoea). It was only sampled a posteriori, because three adult owners were diagnosed with SARS-CoV-2 infection. Next-generation sequencing based on Oxford Nanopore Technology (ONT) was performed on amplicons that were generated using a reverse transcriptase real-time polymerase chain reaction (RT-qPCR) of confirmed positive SARS-CoV-2 nasopharyngeal and buccal swabs, as well as a bronchoalveolar lavage with mean real cycle threshold (qCt) value of 36 based on the Nucleocapsid (N) gene. Descriptive comparisons to known sequences in Botswana and internationally were made using mutation profiling analysis and phylogenetic inferences. Human samples were not available. A near-full length SARS-CoV-2 genome (∼90% coverage) was successfully genotyped and classified under clade 20 O and Pango-Lineage AY.43 (Pango v.4.0.6 PLEARN-v1.3; 2022-04-21), which is a sublineage of the Delta variant of concern (VOC) (formerly called B.1.617.2, first detected in India). We did not identify novel mutations that may be used to distinguish SARS-CoV-2 isolates from the dog and humans. In addition to Spike (S) region mutation profiling, we performed phylogenetic analysis including 30 Delta sequences publicly available reference also isolated from dogs. In addition, we performed another exploratory analysis to investigate the phylogenetic relatedness of sequence isolated from dog with those from humans in Botswana (n = 1303) as of 31 March 2022 and of same sublineage. Expectedly, the sequence formed a cluster with Delta sublineages - AY.43, AY.116 and B.1.617.2 - circulating in same time frame. This is the first documented report of human-associated SARS-CoV-2 infection in a dog in Botswana. Although the direction of transmission remains unknown, this study further affirms the need for monitoring pets during different COVID-19 waves for possible clinically relevant SARS-CoV-2 transmissions between species.


Assuntos
COVID-19 , Doenças do Cão , Lobos , Humanos , Masculino , Cães , Animais , SARS-CoV-2/genética , Botsuana/epidemiologia , COVID-19/veterinária , Filogenia , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia
3.
Viruses ; 14(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36560605

RESUMO

Numerous outbreaks of high-pathogenicity avian influenza (HPAI) were reported during 2020-2021. In Africa, H5Nx has been detected in Benin, Burkina Faso, Nigeria, Senegal, Lesotho, Namibia and South Africa in both wild birds and poultry. Botswana reported its first outbreak of HPAI to the World Organisation for Animal Health (WOAH) in 2021. An H5N1 virus was detected in a fish eagle, doves, and chickens. Full genome sequence analysis revealed that the virus belonged to clade 2.3.4.4b and showed high identity within haemagglutinin (HA) and neuraminidase proteins (NA) for viruses identified across a geographically broad range of locations. The detection of H5N1 in Botswana has important implications for disease management, wild bird conservation, tourism, public health, economic empowerment of vulnerable communities and food security in the region.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Aves Domésticas , Influenza Aviária/epidemiologia , Galinhas , Botsuana/epidemiologia , Virulência , Filogenia , Animais Selvagens , Doenças das Aves Domésticas/epidemiologia
4.
Virol J ; 18(1): 167, 2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391449

RESUMO

BACKGROUND: Poxviruses within the Capripoxvirus, Orthopoxvirus, and Parapoxvirus genera can infect livestock, with the two former having zoonotic importance. In addition, they induce similar clinical symptoms in common host species, creating a challenge for diagnosis. Although endemic in the country, poxvirus infections of small ruminants and cattle have received little attention in Botswana, with no prior use of molecular tools to diagnose and characterize the pathogens. METHODS: A high-resolution melting (HRM) assay was used to detect and differentiate poxviruses in skin biopsy and skin scab samples from four cattle, one sheep, and one goat. Molecular characterization of capripoxviruses and parapoxviruses was undertaken by sequence analysis of RPO30 and GPCR genes. RESULTS: The HRM assay revealed lumpy skin disease virus (LSDV) in three cattle samples, pseudocowpox virus (PCPV) in one cattle sample, and orf virus (ORFV) in one goat and one sheep sample. The phylogenetic analyses, based on the RPO30 and GPCR multiple sequence alignments showed that the LSDV sequences of Botswana were similar to common LSDV field isolates encountered in Africa, Asia, and Europe. The Botswana PCPV presented unique features and clustered between camel and cattle PCPV isolates. The Botswana ORFV sequence isolated from goat differed from the ORFV sequence isolated from sheep. CONCLUSIONS: This study is the first report on the genetic characterization of poxvirus diseases circulating in cattle, goats, and sheep in Botswana. It shows the importance of molecular methods to differentially diagnose poxvirus diseases of ruminants.


Assuntos
Vírus da Doença Nodular Cutânea/genética , Vírus do Orf , Infecções por Poxviridae , Poxviridae , Vírus da Pseudovaríola das Vacas , Animais , Botsuana/epidemiologia , Bovinos , Cabras , Vírus do Orf/genética , Filogenia , Poxviridae/genética , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/veterinária , Vírus da Pseudovaríola das Vacas/genética , Ruminantes , Ovinos , Doenças dos Ovinos/epidemiologia
5.
Vet Ital ; 47(4): 397-405, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194223

RESUMO

Botswana experienced an outbreak of contagious bovine pleuropneumonia (CBPP) in February 1995 after 56 years of freedom from the disease. The outbreak was confined to the north-western region of the country in the Ngamiland District. CBPP was eradicated by applying the stamping-out policy that was implemented in April 1996 and resulted in the slaughter of 320,000 cattle. The Botswana government compensated farmers, offering them different compensation options. By the end of 1997, the restocking exercise introduced 70,000 cattle into Ngamiland. Botswana was declared CBPP-free by the World Organisation of Animal Health in 1998. Prevention strategies, which included border control, quarantine and animal movement controls, were implemented to reduce the risk of reintroduction of the disease as CBPP is still present in neighbouring countries. Serological surveillance and abattoir inspections are conducted in high-risk areas.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Erradicação de Doenças , Surtos de Doenças/veterinária , Pleuropneumonia Contagiosa/prevenção & controle , Animais , Botsuana/epidemiologia , Bovinos , Doenças dos Bovinos/transmissão , Surtos de Doenças/prevenção & controle , Pleuropneumonia Contagiosa/transmissão , Vigilância da População
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA